
©OraInternals Riyaj Shamsudeen

Advanced RAC troubleshooting

By
Riyaj Shamsudeen

©OraInternals Riyaj Shamsudeen 2

Who am I?

� 17 years using Oracle products/DBA
� OakTable member
� Certified DBA versions 7.0,7.3,8,8i &9i
� Specializes in RAC, performance tuning,
Internals and E-business suite

� Chief DBA with OraInternals
� Co-author of “Expert Oracle Practices” ‘2010
� Email: rshamsud at gmail.com
� Blog : orainternals.wordpress.com

©OraInternals Riyaj Shamsudeen 3

Disclaimer

These slides and materials represent the work and opinions of the author and do
not constitute official positions of my current or past employer or any other
organization. This material has been peer reviewed, but author assume no
responsibility whatsoever for the test cases.

If you corrupt your databases by running my scripts, you are solely responsible
for that.

This material should not be reproduced or used without the authors' written
permission.

©OraInternals Riyaj Shamsudeen 4

Agenda
� Global cache performance
� Few important RAC wait events
� RAC background process tuning
� Interconnect issues, lost packets and network layer
� Network layer tuning
� Effective use of parallel query
� Troubleshooting locking issues
� Object re-mastering

©OraInternals Riyaj Shamsudeen 5

Types of packets
� Block oriented packets

� Consistent Read blocks
� Current Read blocks

� Message oriented packets
� Single block grants
� Multi block grants

� Service oriented packets
� SCN generation
� Row cache updates
� GES layer packets

©OraInternals Riyaj Shamsudeen 6

Block oriented packets
� Consistent Read (CR) blocks

� Blocks requested by other nodes for mostly read operations.

� User processes running in local node requests LMS processes
running in the remote nodes for a block or set of blocks.

� LMS might need to apply undo blocks to reconstruct
requested version of the blocks.

©OraInternals Riyaj Shamsudeen 7

CR – disk read

Inst 1 Inst 2 Inst 3

1 User process in instance 1 requests master for a PR mode block.

Select c1 from t1 where n1 =:b1;

1

2 Assuming no current owner, master node grants the lock to inst 1.

2

3 User process in instance 1 reads the block from the disk and holds PR.

3

©OraInternals Riyaj Shamsudeen 8

CR immediate 2-way

Inst 1 Inst 2 Inst 3

1 User process in instance 1 requests master for the block in PR mode.
Select c1 from t1 where n1=:b1;

1

2 Current owner (2) holds the block Protected Read (PR) and so master grants a
PR to instance 1.

2

3 In this case master instance and owner instance are the same. Owner instance
LMS process serves the block to the user process in instance1.

3

©OraInternals Riyaj Shamsudeen 9

CR immediate 3-way

Inst 1 Inst 2 Inst 3

1 User process in instance 1 requests master for the block.

Select c1 from t1 where
N1 =:b1;

1

2 Current owner holds Protected Read (PR) and so master grants a PR
to instance 1.

2

4 Owner instance LMS process serves the block to the user process in
instance1

4

Master sends the owner to send the block to instance1.3

3

©OraInternals Riyaj Shamsudeen 10

CR complications

� There are lot more complications then I covered here:
� gcs log flush
� What if the block has uncommitted transaction?
� What if the block SCN is ahead the query environment SCN?
� What if the block is undergoing changes and the buffer is
pinned by another process?
� What if the block is transaction table, undo block?
� What if the block is index branch block that was just split?

©OraInternals Riyaj Shamsudeen 11

Block oriented packets
� CURRENT mode blocks

� Blocks requested by other nodes to modify the blocks.

� LMS will send the current mode block to the requesting
process.

� Converts the existing block to Past Image.

©OraInternals Riyaj Shamsudeen 12

CUR – disk read

Inst 1 Inst 2 Inst 3

1 User process in instance 1 requests master for a Exclusive grant.

Update t1 set c1=:b1 where
T1 =:b2;

1

2 Assuming no current owner, master node grants the request.

2

3 User process in instance 1 reads the block from the disk.

3

©OraInternals Riyaj Shamsudeen 13

CUR immediate 2-way

Inst 1 Inst 2 Inst 3

1 User process in instance 1 requests master for Exclusive grant on
the block.

1

2 Current owner (2) holds Exclusive mode lock on that block.

2

3 In this case master instance and owner instance are the same. Owner instance
LMS process serves the block to the user process in instance1. Block in
instance 2 is marked as PI (Past Image).

3

Update t1 set c1=:b1 where
T1 =:b2;

PI

©OraInternals Riyaj Shamsudeen 14

CUR immediate 3-way

Inst 1 Inst 2 Inst 3

1 User process in instance 1 requests master for Exclusive grant on the block.

1

2 Current owner (3) holds Exclusive mode lock on that block.

2

4 In this case master instance and owner instance are the same. Owner instance
LMS process serves the block to the user process in instance1. Block in
instance 2 is marked as PI (Past Image).

4

Update t1 set c1=:b1 where
T1 =:b2;

PI

3 Master (instance 2) requests instance 3 to ship the block to instance 1.

3

©OraInternals Riyaj Shamsudeen 15

Gcs log flush sync
� But, if the instances crash right after the block is transferred to
other node, how does RAC maintain consistency?

� Actually, before sending a current mode block LMS process will
request LGWR for a log flush.

� Until LGWR sends a signal back to LMS process, LMS process
will wait on ‘gcs log flush’ event.

� CR block transfer might need log flush if the block was
considered “busy”.

� One of the busy condition is that if the block was constructed by
applying undo records.

©OraInternals Riyaj Shamsudeen 16

LMS Processing (over simplified)

Rx Msg

CR / CUR
block build

Msg to LGWR
(if needed)

Wakeup

Log buffer
processing

Log file write

Signal
LMS

Wake up

Send Block

OS,Network
stack

OS,Network
stack

Copy to SGA
/ PGA

User session
processing

Send GC
Message

OS,Network
stack

User LMSx LGWR

Node 1 Node 2

©OraInternals Riyaj Shamsudeen 17

GC CR latency

� GC CR latency ~=
Time spent in sending message to LMS +
LMS processing (building blocks etc) +
LGWR latency (if any) +
LMS send time +
Wire latency

Averages can be misleading. Always review both total
time and average to understand the issue.

©OraInternals Riyaj Shamsudeen 18

Breakdown latency

265

2247

227

Node 4

1290

7111

1679

Total

87

978

100

Node 3

188375Gc cr block send time

8703016Gc cr block flush time

199402gc cr block build time

Node 2Node 1 Wait time

Avg global cache cr block receive time (ms): 6.2

In this case, LGWR flush time
Need to be reduced to tune latency.

©OraInternals Riyaj Shamsudeen 19

GC CURRENT latency

� GC CUR latency ~=
Time spent in sending message to LMS +
LMS processing : (Pin and build block) +
LGWR latency: Log flush +
Wire latency

Statistics : gc current block flush time
gc current block pin time
gc current block send time

©OraInternals Riyaj Shamsudeen 20

Caution

� Don’t use gv$views to find averages. Use AWR reports or
custom scripts.

� gv$views are aggregated data and persistent from the instance
restart.

� For example this query can be misleading:

select b1.inst_id, b2.value "RECEIVED",
b1.value "RECEIVE TIME",
((b1.value / b2.value) * 10) "AVG RECEIVE TIME (ms)"
from gv$sysstat b1, gv$sysstat b2
where b1.name = ‘gc cr block receive time' and
b2.name = 'gc cr blocks received' and b1.inst_id = b2.inst_id

©OraInternals Riyaj Shamsudeen 21

gc_traffic_print.sql
� You can use my script to print global cache performance data for
the past minute. Download from scripts archive:

http://www.orainternals.com/scripts_rac1.php

---------|--------------|---------|----------------|----------|---------------|---------------|-------------|
Inst	CR blocks Rx	CR time	CUR blocks Rx	CUR time	CR blocks Tx	CUR blocks Tx	Tot blocks
1 | 40999| 13.82| 7827| 4.82| 25070| 17855| 91751|
2 | 12471| 5.85| 8389| 5.28| 31269| 9772| 61901|
3 | 28795| 4.11| 18065| 3.97| 28946| 4248| 80054|
4 | 33105| 4.54| 12136| 4.68| 29517| 13645| 88403|
---------|--------------|---------|----------------|----------|---------------|---------------|-------------|

� During the same time frame, output of the script from prior
slide:

INST_ID RECEIVED RECEIVE TIME AVG RECEIVE TIME (ms)
---------- ---------- ------------ ---------------------

4 165602481 104243160 6.2947825
2 123971820 82993393 6.69453695
3 215681074 103170166 4.7834594
1 134814176 66663093 4.9448133

Very misleading!

©OraInternals Riyaj Shamsudeen 22

Review all nodes.
� It is important to review performance data from all the nodes.

� It is easy to create AWR reports from all nodes using my script:
Refer awrrpt_all_gen.sql.

� [Don’t forget that access to AWR report needs license]

� Or use my script gc_traffic_processing.sql from my script
archive.

Default collection period is 60 seconds.... Please wait for at least 60 seconds...
---------|-----------|---------|-----------|----------|------------|------------|------------|----------|
Inst	CR blk Tx	CR bld	CR fls tm	CR snd tm	CUR blk TX	CUR pin tm	CUR fls tm	CUR blk TX
2 | 67061| .08| .88| .23| 34909| 1.62| .2| .23|
3 | 38207| .17| 2.19| .26| 28303| .61| .08| .26|
4 | 72820| .06| 1.76| .2| 40578| 1.76| .24| .19|
5 | 84355| .09| 2.42| .23| 30717| 2.69| .44| .25|
--

©OraInternals Riyaj Shamsudeen 23

Place holder events
� Few events are place holder events such as:

� gc cr request
� gc cr multiblock request
� gc current request
…

� Sessions can be seen waiting for these wait events, but will not
show up in AWR / ADDM reports.

� After sending the global cache block request, foreground process
waits on these events.

� On receipt of the response, time is accounted for correct wait
event.

©OraInternals Riyaj Shamsudeen 24

2-way/3-way events
� As we saw in the prior section, there are 2-way and 3-way block
transfer.
� GC CR block 2-way
� GC CR block 3-way
� GC CUR block 2-way
� GC CUR block 3-way

� Even if there are many instances, only three instances participate
in a block transfer.

� But, flush messages can be sent to all instances in few cases.

©OraInternals Riyaj Shamsudeen 25

Gc grants

� Wait events ‘gc cr grant 2-way’ and ‘gc current grant 2-way’
indicates
� Block is not in any cache
� Permission granted to read from the disk.

WAIT #6: nam='gc cr grant 2-way' ela= 567 p1=295 p2=770871 p3=1
obj#=5153800 tim=817052932927

WAIT #6: nam='db file sequential read' ela= 11003 file#=295 block#=770871
blocks=1 obj#=5153800 tim=817052943998

©OraInternals Riyaj Shamsudeen 26

Congested..

� Congestion indicates that LMS processes were not able to service
fast enough:
� gc cr grant congested, gc current grant congested
� gc cr block congested, gc current block congested

� Focus on LMS processes and usual culprits are load, SQL
performance or longer CPU queue etc.

©OraInternals Riyaj Shamsudeen 27

Histogram
� Averages can be misleading. Use v$event_histogram to
understand true performance metrics.

� It is better to take snapshots of this data and compare the
differences.

INST_ID EVENT WAIT_TIME_MILLI WAIT_COUNT THIS_PER TOTAL_PER
---------- ------------------------- --------------- ---------- ---------- ----------

1 gc cr block 2-way 1 466345 .92 .92
1 gc cr block 2-way 2 23863264 47.58 48.51
1 gc cr block 2-way 4 20543430 40.96 89.47
1 gc cr block 2-way 8 4921880 9.81 99.29
1 gc cr block 2-way 16 329769 .65 99.95
1 gc cr block 2-way 32 17267 .03 99.98
1 gc cr block 2-way 64 2876 0 99.99
1 gc cr block 2-way 128 1914 0 99.99
1 gc cr block 2-way 256 1483 0 99.99
1 gc cr block 2-way 512 618 0 99.99
1 gc cr block 2-way 1024 83 0 99.99
1 gc cr block 2-way 2048 4 0 99.99
1 gc cr block 2-way 4096 3 0 99.99
1 gc cr block 2-way 8192 5 0 99.99
1 gc cr block 2-way 16384 3 0 100

89.4% of these waits are
Under 4ms.

©OraInternals Riyaj Shamsudeen 28

GC event histograms
� Better yet, use my script gc_event_histogram.sql to understand
current performance metrics.

Default collection period is sleep seconds. Please wait..
Enter value for event: gc cr block 2-way
Enter value for sleep: 60
---------|-----------------------|----------------|----------|
Inst id	Event	wait time milli	wait cnt
1 |gc cr block 2-way | 1| 37|
1 |gc cr block 2-way | 2| 4277|
1 |gc cr block 2-way | 4| 5074|
1 |gc cr block 2-way | 8| 1410|
1 |gc cr block 2-way | 16| 89|
1 |gc cr block 2-way | 32| 1|
1 |gc cr block 2-way | 64| 0|
1 |gc cr block 2-way | 128| 0|
1 |gc cr block 2-way | 256| 0|

©OraInternals Riyaj Shamsudeen 29

Gc buffer busy waits
� GC buffer busy waits are usually symptoms. In many instances,
this event can show up the top most waited event.

� GC Buffer busy simply means that buffer is pinned by another
process and waiting for a different global cache event.

� Understand why that ‘buffer pin holder’ is waiting. Resolving that
will resolve global cache buffer busy waits.

� Segment header changes dues to insufficient freelist groups also
can lead to longer ‘gc buffer busy’ waits.

©OraInternals Riyaj Shamsudeen 30

Example analysis
Client had high Global Cache response time waits.
Global Cache and Enqueue Services - Workload Characteristics
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Avg global enqueue get time (ms):      2.5
Avg global cache cr block receive time (ms):     18.2

Avg global cache current block receive time (ms):     14.6
Avg global cache cr block build time (ms):      0.3
Avg global cache cr block send time (ms):      0.2

Global cache log flushes for cr blocks served %:     25.1
Avg global cache cr block flush time (ms):      5.2

Avg global cache current block pin time (ms):      0.4
Avg global cache current block send time (ms):      0.2

Global cache log flushes for current blocks served %:      1.7
Avg global cache current block flush time (ms):      5.2



©OraInternals  Riyaj Shamsudeen 31

GC CR latency

� GC CR latency ~=
Time spent in sending message to LMS +
LMS processing (building blocks etc) +
LGWR latency ( if any) + 
LMS send time +
Wire latency

Statistics : gc cr block flush time 
gc cr block build time
gc cr block send time



©OraInternals  Riyaj Shamsudeen 32

CR latency

17.3

17.3

Node 4

11.6

20.0

Node 3

5.014.6Avg CUR block receive time

6.718.2Avg. CR block receive time

Node 2Node 1 Wait time

� Three instances are suffering from CR latency, except instance 
2!

� In RAC, node suffering from chronic issues causes GC 
performance issues in other nodes. With that logic in mind, node
2 should be suffering from chronic issues.



©OraInternals  Riyaj Shamsudeen 33

Breakdown of latency

7,905

53,031

6,632

Node 4

28,855

219,822

171,957

Total

4,018

34,406

5,267

Node 3

7,7799,153Gc cr block send time

75,75156,634Gc cr block flush time

148,66611,392gc cr block build time

Node 2Node 1 Statistics

� Sum of flush time is higher, but it is comparable across the 
cluster.

But, notice the build time in node 2.



©OraInternals  Riyaj Shamsudeen 34

Consistent reads

14,259,340

7,208,575

Node 4

20,698,189

3,090,308

Node 3

43,898,4186,276,149db block changes

86,988,5122,493,242data blocks consistent 
Reads – undo records 
applied

Node 2Node 1 Statistics

� For CR blocks, time is spent in building blocks, which 
indicates consistent block generation. 

Very high value compared to other nodes.



©OraInternals  Riyaj Shamsudeen
35

Time line

gc cr block bu
ild

 tim
e

-50
000 0

50
000

100
000

150
000

200
000

250
000

01-NOV-09 12.00.19.378 AM     

01-NOV-09 06.00.31.423 PM     

02-NOV-09 01.00.37.209 PM     

03-NOV-09 08.00.07.261 AM     

04-NOV-09 03.00.22.666 AM     

04-NOV-09 10.01.00.229 PM     

05-NOV-09 05.00.08.772 PM     

06-NOV-09 12.00.14.981 PM     

07-NOV-09 07.00.28.621 AM     

08-NOV-09 02.00.11.959 AM     

08-NOV-09 09.00.10.978 PM     

09-NOV-09 04.00.11.743 PM     

10-NOV-09 11.00.33.035 AM     

11-NOV-09 06.00.22.047 AM     

12-NOV-09 01.00.00.495 AM     

12-NOV-09 08.00.07.527 PM     

13-NOV-09 03.00.22.472 PM     

14-NOV-09 10.00.25.390 AM     

15-NOV-09 09.00.34.001 AM     

16-NOV-09 04.00.02.972 AM     

16-NOV-09 11.00.07.472 PM     

17-NOV-09 06.00.37.979 PM     

18-NOV-09 01.00.34.698 PM     

19-NOV-09 09.00.19.759 AM     

20-NOV-09 04.00.13.995 AM     

20-NOV-09 11.00.23.359 PM     

21-NOV-09 06.00.05.081 PM     

22-NOV-09 05.30.26.476 PM     

23-NOV-09 12.30.01.082 PM     

24-NOV-09 07.30.10.895 AM     

25-NOV-09 02.30.07.520 AM     

25-NOV-09 09.30.11.682 PM     

26-NOV-09 04.30.09.996 PM     

27-NOV-09 11.30.43.985 AM     

28-NOV-09 06.30.07.230 AM     

29-NOV-09 01.30.08.342 AM     

29-NOV-09 08.30.08.747 PM     

30-NOV-09 03.30.13.141 PM     

01-DEC-09 10.30.24.552 AM     

02-DEC-09 05.30.05.860 AM     

03-DEC-09 12.30.34.589 AM     

03-DEC-09 07.30.05.752 PM     

04-DEC-09 02.30.08.851 PM     

05-DEC-09 09.30.06.135 AM     

06-DEC-09 04.30.04.276 AM     

06-DEC-09 11.30.26.860 PM     

07-DEC-09 06.30.04.151 PM     

d
ate

gc cr block build time

gc cr block bu
ild

 tim
e

�
We wanted to see when this problem started. Surprisingly, 
instance 2 had a pattern of increasing flush time.



©OraInternals  Riyaj Shamsudeen 36

Db block changes
with  segstats as (

select * from (
select inst_id, owner, object_name, object_type , value ,

rank() over (partition by  inst_id, statistic_name order by value desc
) rnk , statistic_name

from gv$segment_statistics
where value >0
) where rnk <11
)  ,

sumstats as ( select inst_id, statistic_name, sum(value) sum_value from 
gv$segment_statistics group by statistic_name, inst_id)

select a.inst_id, a.statistic_name, a.owner, a.object_name, 
a.object_type,a.value,(a.value/b.sum_value)*100 perc
from segstats a ,   sumstats b

where a.statistic_name = b.statistic_name
and a.inst_id=b.inst_id
and a.statistic_name ='db block changes'
order by a.statistic_name, a.value desc
/
INST_ID STATISTIC_NAME     OWNER OBJECT_NAME                    TYPE  VALUE        PERC
------- ------------------ ----- ------------------------------ ----- ------------ ------

2 db block changes   AR    CUSTOM_TABLE                   TABLE 122949282400  81.39
4                    INV   MTL_MATERIAL_TRANS_TEMP_N1     INDEX   1348827648  16.59
3                    AR    RA_INTERFACE_LINES_N2          INDEX    791733296   9.77
3                    AR    RA_CUSTOMER_TRX_LINES_N2       INDEX    715855840   8.83
1                    INV   MTL_MATERIAL_TRANS_TEMP_N1     INDEX    652495808  12.44

...

Unfortunately, AWR report does not capture 
segments with high ‘db block changes’.



©OraInternals  Riyaj Shamsudeen 37

Solution
� Finally, it boiled down to a custom code bug which was 
updating almost all rows in a table unnecessarily.

� Unfortunately, number of rows that fall in to that criteria was 
slowly increasing. 

� So, GC CR response time was slowly creeping up and it 
wasn’t easy to identify the root cause.

� After the code fix, GC CR time came down to normal range.



©OraInternals  Riyaj Shamsudeen 38

Agenda
� Global cache performance 
� Few important RAC wait events and statistics
� RAC background process tuning
� Interconnect issues, lost packets and network layer
� Network layer tuning 
� Effective use of parallel query
� Troubleshooting locking issues
� Object re-mastering



©OraInternals  Riyaj Shamsudeen 39

LMS processes – normal state

40%

LMS

Node 1

CPUusage

User

40%

LMS

User

40%

LMS

User

Node 2 Node 3

40%

LMS

User

Node 4

� During normal conditions, LMS processes are operating with 
no CPU latency.

� So, there is no Global cache latency either. 



©OraInternals  Riyaj Shamsudeen 40

CPU latency

40%

LMS

Node 1

CPUusage

User

40%

LMS

User

40%

LMS

User

Node 2 Node 3

80%

LMS

User

Node 4

� If one node is suffering from CPU starvation then LMS 
process running in that node will suffer from CPU latency.

� This will result in Global cache latency in other nodes.



©OraInternals  Riyaj Shamsudeen 41

Global Cache waits
� Global Cache waits increases due to increase in LMS latency in 
the CPU starved node.

� Much of these GC waits are blamed on interconnect interface 
and hardware.

� In many cases, interconnect is performing fine, it is that GCS 
server processes are introducing latencies.



©OraInternals  Riyaj Shamsudeen 42

LMS & 10.2.0.3
� In 9i, increasing priority of LMS processes to RT helps (more 
covered later).

� From Oracle release 10.2.0.3 LMS processes run in Real Time 
priority by default. 

� Two parameters control this behaviour:
• _high_priority_processes
• _os_sched_high_priority



©OraInternals  Riyaj Shamsudeen 43

Parameters in 10gR2
� _high_priority_processes: 

Default value: LMS*|VKTM*
This parameter controls what background processes should get 
Real time priority. Default is all LMS processes and VKTM 
process.

� _os_sched_high_priority :
Default value: 1
This is a switch. If set to 0, no background process will run in        
high priority.



©OraInternals  Riyaj Shamsudeen 44

oradism
� Of course, bumping priority needs higher privileges such as root
in UNIX.

� Oradism utility is used to increase the priority class of these 
critical background process in UNIX.

� Verify that LMS processes are using Real time priority in UNIX 
and if not, oradism might not have been configured properly.

� In Windows, oradism service is used to increase the priority.



©OraInternals  Riyaj Shamsudeen 45

More LMS processes?
� Typical response is to increase number of LMS processes 
adjusting _lm_lms (9i) or gcs_server_processes(10g).

� Increase in LMS processes without enough need increases 
xcalls/migrates/tlb-misses in massive servers.

� Further, LMS process runs in RT CPU priority and so, CPU 
usage will increase.



©OraInternals  Riyaj Shamsudeen 46

LMS & CPU usage

� In huge servers, by default, number of LMS processes might be 
quite high. It is possible to get up to 26 LMS processes by 
default.

� Typically, same number of LMS processes as interconnect or 
remote nodes is a good starting point.

� If there is enormous amount of interconnect traffic, then 
configure LMS processes to be twice the interconnect.



©OraInternals  Riyaj Shamsudeen 47

LGWR and CPU priority
� LGWR performance is akin to Global cache performance.

� If LGWR suffers from performance issues, it will reflect on 
Global cache performance.

� For example, If LGWR suffers from CPU latency issues, then 
LMS will have longer waits for ‘gcs log flush sync’ event

� This leads to poor GC performance in other nodes.



©OraInternals  Riyaj Shamsudeen 48

LGWR priority
� Method to increase priority for LGWR and LMS in 9i (Example 
for Solaris)�. If you don’t want to increase priority to RT for 
LGWR, at least, consider FX priority.

priocntl -e -c class -m userlimit -p priority
priocntl -e -c RT -p 59 `pgrep -f ora_lgwr_${ORACLE_SID}`
priocntl -e -c FX -m 60 -p 60 `pgrep -f ora_lms[0-9]*_${ORACLE_SID}`

� In 10g, parameter _high_priority_processes can be used (needs 
database restart though)

alter system set "_high_priority_processes"="LMS*|LGWR*" scope=spfile sid='*';
alter system set "_high_priority_processes"="LMS*|VKTM*|LGWR*" scope=spfile

sid='*'; (11g)



©OraInternals  Riyaj Shamsudeen 49

Pitfalls of RT mode
� Of course, there are few! 
� LMS process can continuously consume CPU and can introduce 
CPU starvation in servers with few CPUs.

� A bug was opened to make LMS process sleep intermittently, but 
that causes LMS to be less active and can cause GC latency.

� Another undocumented parameter 
_high_priority_process_num_yields_before_sleep was 
introduced as a tunable. But, hardly a need to alter this 
parameter. 

� Hyper-active LGWR can lead to latch contention issues.



©OraInternals  Riyaj Shamsudeen 50

Binding..
� Another option is to bind LGWR/LMS to specific 
processors or processor sets.

� Still, interrupts can pre-empt LMS processors and 
LGWR. So, binding LMS to processor set without 
interrupts helps (see psradm in solaris).

� But, of course, processor binding is useful in servers with higher 
number of CPUs such as E25K platforms.



©OraInternals  Riyaj Shamsudeen 51

CSSD/CRSD
� CSSD is a critical process. Few CSSD processes must 
be running with RT priority.

� CPU starvation in the server can lead to missed network 
or disk heart beat. This can lead to node reboots.

� It is important to have good and consistent I/O 
performance to ORA_CRS_HOME directories.

� If CSSD can’t access those directories efficiently (i.e. 
due to NFS or other file system issues), then that can 
lead to node reboots too.



©OraInternals  Riyaj Shamsudeen 52

Summary
� In summary, 

• Use optimal # of LMS processes
• Use RT or FX high  priority for LMS and LGWR 
processes.
• Configure decent hardware for online redo log files.
• Tune LGWR writes and Of course, avoid double 
buffering and double copy using optimal file systems.
• Of course, tune SQL statement to reduce logical 
reads and reduce redo size.



©OraInternals  Riyaj Shamsudeen 53

Agenda
� Global cache performance 
� Few important RAC wait events and statistics
� RAC background process tuning
� Interconnect issues, lost packets and network layer
� Effective use of parallel query
� Troubleshooting locking issues
� Object re-mastering



©OraInternals  Riyaj Shamsudeen 54

gc blocks lost
� Probably, the most critical statistics for interconnect issues.

� Consistent high amount of ‘gc blocks lost’ is an indication of 
problem with underlying network infrastructure. (Hardware, 
firmware etc).

� Need to understand which specific component is an issue. 
Usually, this is an inter-disciplinary analysis.

� Ideal value is near zero. But, only worry about this, if there are 
consistently higher values. 



©OraInternals  Riyaj Shamsudeen 55

Effects of lost blocks
� Higher number of block loss can lead to timeouts in GC traffic 
wait events. Many processes will be waiting for place-holder 
events. 

� Use total_timeouts column in v$system_event to see if the 
timeouts are increasing.

� Percent of total_timeouts should be very small.



©OraInternals  Riyaj Shamsudeen 56

Network layers

Socket layer

User Process

protocol layer
(UDP)

Interface layer

switch

Interface layer

protocol layer
(UDP)

Socket layer

LMSx

IP queue IP queue

Socket
queues

Source: [8,Richard Stevens]

Udp_xmit_hiwatUdp_recv_hiwatUdp_max_bufNet.core.rmem_max

Fragmentation and
Assembly

MTU



©OraInternals  Riyaj Shamsudeen 57

UDP buffer space

� UDP Tx/Rx buffers are allocated per process.

� When the process executes CPU, it drains the UDP buffers. If 
the buffer is full, then incoming packets to that process are 
dropped.

� Default values for the UDP buffers are small for the bursty
nature of interconnect traffic. Increase UDP buffer space to 
128KB or 256KB.

� UDP is a “send-and-forget” type protocol. Sending process does 
not get any acknowledgement. 



©OraInternals  Riyaj Shamsudeen 58

CPU latency and UDP

� This can lead to buffer full conditions and lost packets.

� It is essential to keep CPU usage under 80% to avoid latencies 
and lost packets.

� Due to CPU latency, process might not be able to acquire CPU 
quick enough.



©OraInternals  Riyaj Shamsudeen 59

Agenda
� Global cache performance 
� Few important RAC wait events and statistics
� RAC background process tuning
� Interconnect issues, lost packets and network layer
� Effective use of parallel query
� Troubleshooting locking issues
� Object re-mastering



©OraInternals  Riyaj Shamsudeen 60

Parallel Query Setup

� It is imperative that PQ messages are transmitted between 
producers and consumers.

� Insufficient network bandwidth with PQ storm can cause higher 
GC latency and possible packet loss.

� Parallel Query slaves can be allocated from multiple instances for 
a query.



©OraInternals  Riyaj Shamsudeen 61

PQ Optimization 

QC

P1

Inst 2

P2 P3 P8P1

Inst 1

P2 P3 P8… …

P9 P10 P11 P16… P9 P10 P11 P16…

Producers

Consumers

Communication between producers/consumers are
Not limited to one node. Gigabytes of data flew 
Between node 1 and node 2.



©OraInternals  Riyaj Shamsudeen 62

Optimizations in 10g/11g

� Oracle code tries to allocate all PQ slaves in one node, if 
possible. This minimizes PQ induced interconnect traffic.

� If it not possible to allocate all slaves from a node, then the least 
loaded node(s) are chosen for PQ slave allocation.

� PQ algorithms are optimized in Oracle versions 10g and 11g. 
Only few discussed here.

� In 11g, interconnect traffic due to PQ is also reported in the 
AWR reports.



©OraInternals  Riyaj Shamsudeen 63

PQ and partitioning

� Of course, partitioning strategy plays critical role in this localized 
partition-wise joins.

� For partition-wise joins, PQ traffic is further minimized.

� Partitions are joined within the same node further reducing PQ 
induced interconnect traffic.

� Full partition-wise join can use all instance effectively, akin to 
shared-nothing systems. Full partition-wise joins does not induce 
spurious interconnect traffic.



©OraInternals  Riyaj Shamsudeen 64

PQ-Summary
� Inter instance parallelism need to be carefully considered and 
measured. 

� For partition based processing, when processing for a set of 
partitions is contained within a node, performance will be better.

� Excessive inter instance parallelism will increase interconnect 
traffic leading to performance issues.

� http://www.oracle.com/technology/products/bi/db/11g/pdf/twp_bidw_parallel

_execution_11gr1.pdf

“..inter-node parallel execution will not scale with an undersized interconnect”



©OraInternals  Riyaj Shamsudeen 65

Agenda
� Global cache performance 
� Few important RAC wait events and statistics
� RAC background process tuning
� Interconnect issues, lost packets and network layer
� Effective use of parallel query
� Troubleshooting locking issues
� Object re-mastering



©OraInternals  Riyaj Shamsudeen 66

GES layer
� In RAC, Global Enqueue Services handles all global locks 
requests, converts.

� Almost many resources are globally co-ordinated. 

� For example, in a single instance, library cache locks are not 
implemented as “enqueues”. But, In RAC, library cache locks are 
externalized as enqueues (LA-LZ) and globally co-ordinated.

� This means that DDL statement on an object in one node need 
to be globally co-ordinated so that parse locks can be invalidated 
in all instances.



©OraInternals  Riyaj Shamsudeen 67

Agenda
� Global cache performance 
� Few important RAC wait events and statistics
� RAC background process tuning
� Interconnect issues, lost packets and network layer
� Effective use of parallel query
� Troubleshooting locking issues
� Object re-mastering



©OraInternals  Riyaj Shamsudeen 68

Object re-mastering
� Before reading the block, an user process must request master 
node of the block to access that block.

� Typically, a batch process will access few objects aggressively.

� If an object is accessed excessively from a node then re-
mastering the object to that node reduces Global cache grants.

� Local grants (affinity locks) are very efficient compared to remote 
grants avoiding global cache messaging traffic.



©OraInternals  Riyaj Shamsudeen 69

Object based in 10gR2
� Dynamic remastering is file based in 10gR1. If a block need to be 
remastered, then every block in that data file must be remastered
to an instance.

� In 10gR2, remastering is object based. If a block to be 
remastered, then all blocks associated with that object is 
remastered to an instance.

� Three background processes work together to implement 
dynamic remastering functionality.



©OraInternals  Riyaj Shamsudeen 70

High level overview 10gR2
� LCK0 process maintains object level statistics and determines if
remastering must be triggered.

� If an object is chosen, a request is queued. LMD0 reads the 
request queue and initiates GES freeze. LMD0 trace file

*** 2010-01-08 19:41:26.726
* kjdrchkdrm: found an RM request in the request queue
Dissolve pkey 6984390
*** 2010-01-08 19:41:26.727
Begin DRM(189) - dissolve pkey 6984390 from 2 oscan 1.1
ftd received from node 1 (8/0.30.0)
ftd received from node 0 (8/0.30.0)
ftd received from node 3 (8/0.30.0)
all ftds received

� LMON performs reconfiguration.
*** 2010-01-08 19:41:26.793
Begin DRM(189)
sent syncr inc 8 lvl 5577 to 0 (8,0/31/0)
synca inc 8 lvl 5577 rcvd (8.0)



©OraInternals  Riyaj Shamsudeen 71

Parameters 10gR2
Three parameters control the behavior:

� _gc_affinity_limit
� _gc_affinity_time
� _gc_affinity_minimum

� _gc_affinity_limit default value is 50. Not documented well, but, 
it is number of times a node should access an object more than 
other nodes.

� _gc_affinity_time default value is 10. Frequency in seconds to 
check if remastering to be triggered or not.

� _gc_affinity_minimum determines number of DRM requests to 
enqueue and default is 600.



©OraInternals  Riyaj Shamsudeen 72

Defaults
� Default for these parameters may be too low in a very busy, high-
end instances.

� If your database have higher waits for ‘gc remaster’ and ‘gcs drm
server freeze’ then don’t disable this feature completely. Instead 
tune it. 

� Some good starting points (for a very busy environment) are: 
[ YMMV]

� _gc_affinity_limit to 250
� _gc_affinity_minimum to 2500.



©OraInternals  Riyaj Shamsudeen 73

11g
� In 11g, these three parameters are completely removed. 

� Three new parameters are introduced:
� _gc_affinity_locking
� _gc_affinity_locks
� _gc_affinity_ratio

� Sorry, I have not tested these parameters thoroughly yet.



©OraInternals  Riyaj Shamsudeen 74

An example
Top 5 Timed Events                                         Avg %Total
~~~~~~~~~~~~~~~~~~                                        wait  Call
Event Waits Time (s) (ms) Time Wait Class
------------------------------ ------------ ----------- ------ ------ ----------
gc buffer busy 1,826,073 152,415 83 62.0 Cluster
CPU time 30,192 12.3
enq: TX - index contention 34,332 15,535 453 6.3 Concurrenc
gcs drm freeze in enter server 22,789 11,279 495 4.6 Other
enq: TX - row lock contention 46,926 4,493 96 1.8 Applicatio

Global Cache and Enqueue Services - Workload Characteristics
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Avg global enqueue get time (ms):     16.8
Avg global cache cr block receive time (ms):     17.1

Avg global cache current block receive time (ms):     14.9



©OraInternals  Riyaj Shamsudeen 75

Views
� View v$gcspfmaster_info provides remastering details. For 
example, you can identify the object with high remastering count.
FILE_ID  OBJECT_ID CURRENT_MASTER PREVIOUS_MASTER REMASTER_CNT

---------- ---------- -------------- --------------- ------------
0    6983606              0           32767            1
0    5384799              2               1            2
0    6561032              3               2            2
0    5734002              0               2            2
0    6944892              2               0            2
0    5734007              2               0            4
0    6944891              2               0            5
0    6795604              2               0            5
0    6944894              2               0            5
0    6795648              2               0            6
0    5734006              2               0            6
0    4023250              2               0            6
0    5734003              0               2            7



©OraInternals  Riyaj Shamsudeen 76

Views
� View x$object_object_affinity_statistics provides current object 
affinity statistics.

select * from  x$object_affinity_statistics order by opens
ADDR                   INDX    INST_ID     OBJECT       NODE    OPENS
---------------- ---------- ---------- ---------- ---------- ----------
…
FFFFFFFF7C04CB40          8          3    4740170          1    113
FFFFFFFF7C04CB40        109          3    1297745          1    127
FFFFFFFF7C04CB40         21          3    1341531          1    128
FFFFFFFF7C04CB40          2          3    2177393          1    135
FFFFFFFF7C04CB40        153          3    6942171          2    174
FFFFFFFF7C04CB40        108          3    1297724          1    237
FFFFFFFF7C04CB40          3          3    2177593          1    239
FFFFFFFF7C04CB40        106          3    1297685          1    337
FFFFFFFF7C04CB40         53          3    6984154          3    1162



©OraInternals  Riyaj Shamsudeen 77

Oradebug

� This enqueues an object remaster request. LMD0 and LMON 
completes this request

*** 2010-01-08 23:25:54.948
* received DRM start msg from 1 (cnt 1, last 1, rmno 191)
Rcvd DRM(191) Transfer pkey 6984154 from 0 to 1 oscan 0.0
ftd received from node 1 (8/0.30.0)
ftd received from node 0 (8/0.30.0)
ftd received from node 3 (8/0.30.0)

� You can manually remaster an object with oradebug command
oradebug lkdebug -m pkey <object_id>



©OraInternals  Riyaj Shamsudeen 78

Oradebug
� You can manually remaster an object with oradebug command. 
Current_master starts from 0. 
1* select * from v$gcspfmaster_info where object_id=6984154
SQL> /
FILE_ID  OBJECT_ID CURRENT_MASTER PREVIOUS_MASTER REMASTER_CNT

---------- ---------- -------------- --------------- ------------
0    6984154              1               0            2

SQL> oradebug lkdebug -m pkey 6984154
Statement processed.
SQL>  select * from v$gcspfmaster_info where object_id=6984154
2  /
FILE_ID  OBJECT_ID CURRENT_MASTER PREVIOUS_MASTER REMASTER_CNT

---------- ---------- -------------- --------------- ------------
0    6984154              2               1            3



©OraInternals  Riyaj Shamsudeen 79

References

1. Oracle support site. Metalink.oracle.com. Various documents
2. Internal’s guru Steve Adam’s website
www.ixora.com.au
3. Jonathan Lewis’ website
www.jlcomp.daemon.co.uk
4. Julian Dyke’s website
www.julian-dyke.com
5. ‘Oracle8i Internal Services for Waits, Latches, Locks, and Memory’
by Steve Adams
6. Randolf Geist : http://oracle-randolf.blogspot.com
7. Tom Kyte’s website
Asktom.oracle.com
8. Richard Stevens, Gary R Wright: TCP/IP Illustrated


